Sweet Sounds

VEHICLE IMPROVEMENT PROFESSIONALS

1418 N. Riverfront Dr. Mankato, MN
  
Contact Us: (507) 345-8863
  • Home
  • Services
    • Car Audio
    • Custom Fabrication
    • Driving Safety
    • Factory Audio System Repair
    • Factory Radio Integration
    • Heated Seat Installation
    • Installation Services
    • Lighting
    • Marine Audio
    • Mobile Video
    • Motorcycle Audio
    • Remote Start
    • Window Tint
  • Gallery
  • About Us
    • Why Choose Us
    • Meet The Team
    • Job Openings
    • Hours and Directions
  • Sales & Promos
  • Blog
    • Articles
    • Featured Installations
    • Installations
    • Products
  • Space for Lease
  • Contact Us
  • You are here: Home / ARTICLES / Wire Equivalency Using the AWG Standard: 16+16 Isn’t 8

    Wire Equivalency Using the AWG Standard: 16+16 Isn’t 8

    September 22, 2024 By BestCarAudio.com Leave a Comment

    Wire Equivalency

    We recently witnessed a discussion on social media in which someone said that two 16 AWG wires could do the same work as a single 8 AWG wire. Unfortunately, the American Wire Gauge standard for stranded conductors isn’t intuitive in helping determine how multiple conductors can pass current. So let’s get geeky and do the math on how much current different-sized or multiple conductors can handle. We know it’s not something that comes up daily, but it’s an interesting topic.

    The American Wire Gauge Standard

    The American Wire Gauge standard for describing the cross-sectional area of a conductor was created in 1857. Knowing the area of a conductor is crucial to picking the correct size wire for a specific current-carrying application. For example, a small wire, perhaps one with a diameter of 0.1 inch, won’t be able to handle 50 amps of current without going up in smoke.

    The AWG standard has a direct diameter-area relationship between one size and the next. For example, the diameter of a 10 AWG wire is 1.1229322 times the diameter of an 11 AWG Wire. The exact ratio applies to any two adjacent wire sizes. As such, the ratio of wire size to diameter is logarithmic, as the size doesn’t increase linearly. The chart below plots the data.

    Wire Equivalency
    The area of a conductor in square millimeters (vertical scale) versus the American Wire Gauge size (horizontal).

    Given that the relationship is logarithmic, it’s tough to determine an equivalency between conductors. For example, if you have an 1,800-watt amplifier installed, it will need more current carrying capacity than a single 4 AWG conductor can provide. Does it need a full 0 AWG conductor? Well, it can’t hurt. But would two 4 AWG wires work? That’s what we have set out to determine.

    Metric Wire Sizes

    Just so you’re aware, Europe and Asia use metric wire sizes. While they use metric for most things, Canada still uses the AWG standard. For example, a 4 AWG power wire is sold as a 25mm2 wire across the ocean. It should come as no surprise that calculating equivalent current carrying capacities using the metric system is very simple.

    There seems to be a discrepancy, however. If you look up 4 AWG in the above chart, it has an area of 0.03286 square inch. That’s equivalent to 21.2 square millimeters. An area of 21.2 is a lot less than 25 square millimeters.

    Let’s look at another size. Most charts specify that a 10 AWG is equivalent to a 6-square-millimeter conductor. However, the American Wire Gauge chart lists it as 5.26 square millimeters. Clearly, some averaging is done at some point in the process. Even when trying to be accurate, it seems someone has taken a lackadaisical approach to math.

    Power Wire Current Carrying Equivalency

    One accurate fact we have is a resistance measurement for the different AWG sizes of copper wiring. This specification is part of the American Wire Gauge standard. We can compare the resistance of differently sized wires regarding their current carrying capacity. We’ve created a chart that compares standard wire sizes from 20 to 0000 AWG to other sizes.

    Wire Equivalency

    Using the chart is simple, though perhaps not intuitive at first. Let’s start with some simple observations. Any cell with the same wire size will have a number 1. This indicates that the resistance is equivalent, which, of course, makes sense.

    Let’s say we have a 4 AWG conductor and want to know its resistance compared to a 2 AWG conductor. Start by looking across the top row for the 4 column, then look down at the row represented by the 2. We see a number of 0.625. This means a single 4 AWG wire can carry 62.5% of the current of a 2 AWG conductor for the same voltage drop.

    We can compare them the other way by looking across the top for the 2 column and then comparing it to the 4 row. Here, we see the number 1.6. This means a 2 AWG conductor can carry 1.6 times as much current as the 4 AWG for the same voltage drop.

    Wire Equivalency
    Rockford Fosgate offers full AWG/CTA-2031-spec power and ground wire with all-copper construction.

    Multiple Conductor Evaluation

    The table also gives us information on how much current multiple conductors might handle to be equivalent to something more significant. So, how many runs of 4 AWG are comparable to a single 0 AWG cable? Look across to the 0 column, then down to the 4 row. We see the number 2.514. This means we need 2.514 runs of 4 AWG to pass the same amount of current as a 0 AWG cable with the same voltage drop.

    A better example would be comparing a 6 AWG cable to a 0 AWG. Here, the ratio is 3.971. So, effectively, you need four runs of 6 AWG to equal a single 0 AWG.

    Now, let’s get back to what started this discussion. How many 16 AWG wires are required to be equal in current-carrying to a single 8 AWG wire? If we go to the 8 column and then down to the 16 row, we see the number 6.389. This means you need more than six runs of 16 gauge to pass the same current as a single 8 AWG conductor. Six would have more resistance, and seven would have less than the 8 AWG.

    Wire Equivalency
    KICKER’s full AWG-Spec Hyper-Flex Power Cable is available in 8, 4, and 0 AWG with your choice of blue or black conductors.

    Voltage Drop Look-Up Table

    While understanding how much current a single or multiple conductors can pass, we need a standard for an acceptable voltage drop. This is a bit complicated as it considers conductor size, current requirements and the length of the wire. The ANSI/CTA-2015 Mobile Electronics Cabling Standard uses a voltage drop of 0.25 volt. For an electrical system providing 14.4 volt, that’s a drop of 1.7% across a single run of wire. We’d likely see the same drop along the ground path.

    Please refer back to our article about conductor ampacity (how much current a wire can handle) to determine what’s suitable for a specific application.

    Not All Wire Is Created Equally

    Before we close out, we should remind our readers that this chart only works for all-copper, full AWG-spec conductors. The resistance will be different if you are looking at a tinned wire. If the wire is copper-clad aluminum, the chart doesn’t apply. If the wire label says gauge instead of AWG, it’s likely not full AWG sizing.

    Be wary of these shortcuts and differences. You are buying something unique. Though the tinned wire might be a much better choice for marine applications, tin has only 15% the conductivity of pure copper. You may want to go up a wire size in a marine application to ensure reliable power delivery.

    Wire Equivalency
    Audison power and ground wire features Strand Multiple Twisted geometry to improve conductivity while remaining flexible.

    Be Sure To Get The Right Size Wire For Your Car Audio System

    Be sure to discuss with the product specialist or technician designing the audio system for your vehicle what size wire they’re using. Before the project starts, understand whether it’s a single run of wire or multiple. This handy chart and a basic understanding of electrical theory from high school will ensure that your audio system performs reliably. Or, at the very least, you won’t make a statement that two 16 AWG wires are the same as a single 8 AWG.

    This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

    Share this:

    • Click to share on Facebook (Opens in new window) Facebook
    • Click to share on X (Opens in new window) X
    • Click to share on LinkedIn (Opens in new window) LinkedIn
    • Click to email a link to a friend (Opens in new window) Email

    Related

    Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

    About BestCarAudio.com

    BestCarAudio.com is a showcase for the very best mobile electronics retailers in the world and a place to educate and inform interested consumers about existing and emerging technologies.

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    Remote Start Packages

    Search Our Installs and Articles

    Why Choose Us?

    Why Choose Us

    Vast Experience and Expertise Counts The number one reason to choose Sweet Sounds is our vast experience that has provided us with the expertise to ensure your experience as a client is unmatched. … [Read More...]

    Car Audio

    Car Audio

    Enjoy Great Sound! At Sweet Sounds, we aim to deliver incredible sounding car audio systems. Whether it’s a set of replacement speakers, a subwoofer add-on or an entire reference-quality audio system … [Read More...]

    Join Our Email List

    Tags

    2008 2015 2016 2017 Alpine Amplifiers Android Auto Apple CarPlay ARC Audio AudioControl Backup Cameras Bluetooth Car Starter Chevy Compustar Digital Designs DroneMobile Drone Mobile Firstech Focal Ford Harley Davidson Heated Seats Kia Memphis Memphis Car Audio Momento Nissan Polaris Processors Radios Remote Car Starter Remote Start Road Glide Rockford Fosgate Sale SiriusXM Sony Speakers Stinger Street Glide Subwoofers Toyota window film window tint

    Location


    Get Directions to Sweet Sounds

    Connect With US

    • Facebook
    • Instagram
    • Twitter
    • YouTube

    Hours

    Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 5:00 pm

    Closed Saturday and Sunday

    Copyright © 2025 Sweet Sounds · Privacy Policy · Website by 1sixty8 media, inc. · Log in

     

    Loading Comments...